8/9^x=7^1-x

Simple and best practice solution for 8/9^x=7^1-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/9^x=7^1-x equation:



8/9^x=7^1-x
We move all terms to the left:
8/9^x-(7^1-x)=0
Domain of the equation: 9^x!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
8/9^x+x-7^1=0
We multiply all the terms by the denominator
x*9^x-7^1*9^x+8=0
Wy multiply elements
9x^2-63x^2+8=0
We add all the numbers together, and all the variables
-54x^2+8=0
a = -54; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-54)·8
Δ = 1728
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1728}=\sqrt{576*3}=\sqrt{576}*\sqrt{3}=24\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{3}}{2*-54}=\frac{0-24\sqrt{3}}{-108} =-\frac{24\sqrt{3}}{-108} =-\frac{2\sqrt{3}}{-9} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{3}}{2*-54}=\frac{0+24\sqrt{3}}{-108} =\frac{24\sqrt{3}}{-108} =\frac{2\sqrt{3}}{-9} $

See similar equations:

| 3^(2x-5)=27 | | 3x^2+x28=2 | | 3x^+x28=2 | | x^2+6x+320=0 | | 2(2x+3)÷5=6 | | -2x-124=-8+56 | | 6x-26=8x+16 | | -2x-91=3x+24 | | -96+8x=37+x | | (x+8)^2=12^2+x^2 | | 8^x-12*(2^x)+32=0 | | -13x-45=27-10x | | 8^x-12*2^x+32=0 | | x-(-27)=35+12 | | 2x=+3=9 | | 6/x+3/x+2=2 | | 10322=x+3.16x | | 7x÷4=22-x | | 3x-8x=60 | | 4(x/5+3)=32 | | -2-(-9+5x)=34-2x | | 7×y×=63 | | X×x×x=5 | | x^2/x+5=9 | | 2/7*x=7/2 | | 400=2,3x+26 | | 5x-50=3x+10 | | 2×(x)3-4=6 | | 2x+11=x-14 | | 2y+15=10y-3 | | 4x²+8x-3=0 | | 3-(2x+4)=(3x+1 |

Equations solver categories